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ABSTRACT

In this paperwe reportrecentimprovementsn word error
performanceon a voicemail transcriptiontask. Lastyear,
the spealer independentvord errorrate (WER) on the dev
testsetof the Voicemail Transcriptiontaskwasreportedat
35.45%][1]. Thisyear we reporta relative 20% gain over
this number The improvementsvere obtainedusing sev-
eral new algorithmsand an increasedamountof training
data.In additionto benchmarkindhe performancef these
algorithmson the Voicemail task, we have also evaluated
themon the Switchboardtask,andwe reporttheseresults
hereaswell. Finally, we also presentthe resultof cross-
domainexperimentsto evaluatethe domain-independence
of theconstructedystems.

1. INTRODUCTION

In this paperwe reportrecentimprovementsn transcribing
corversationakelephonespeechastypified by the Voice-
mail and Switchboardtranscriptiontasks. Theseimprove-
mentsarea resultof somenew algorithmsand,in the case
of Voicemail,alsodueto anincreasen theamountof train-
ing data. In thefollowing sectionswe describethe contri-
bution of several componentgo improving the word error
rate. The Voicemailtranscriptiontaskis describedn [1]
andrepresentsamplesof corversationatelephonespeech
from a single spealer. The Switchboardtaskis described
in severalpaperdn [2] andrepresentsamplesf telephone
corversationdetweertwo people.

One of the goalsof speechrecognitionresearchs to
designa domain-independerstystem(at leastasfar asthe
acoustianodelis concerned)hatcandealwith varioustypes
of speechfrom the samecategory: for instancea system
built on Switchboardshouldbe able to provide the same
performanceon Voicemail as a systemtrained on Voice-
mail. Generallyspeaking,this hasbeenan elusive goal,
asthe bestperformancas usually obtainedby training the
acousticmodelson datadravn from the samedomainas
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the testdata. In this paper we also evaluatethe domain-
independencef systemsbuilt with Voicemailand Switch-
boardtrainingdata.

2. TRAINING/TEST DATA

Voicemail

The Voicemailtraining databasenow comprises70 hours
of speechwhich correspondso approximately700kwords
of text. We will referto this training databases T-VM1.
The size of the testingvocahulary is 11k words. The de-
velopmenttestsetfor this databaseomprisest3 messages
(D-VM) andthe evaluationtestset (E-VM) comprises62
messages.

Switchboard

We used23780of the 2438 Switchboard corversationg2]
asourtrainingset,andthel19corversationsisedn the 1997
JohnsHopkins Workshopas the test set. This represents
around200hoursof speechkand2 million wordsof text. We
will referto this training databaseas T-SWB1 and to the
testdatabaseas E-SWB. The size of the vocahulary used
for testingwas18k words.

3. SYSTEM DESCRIPTION

The speechrecognitionsystemusesa phoneticrepresenta-
tion of thewordsin thevocalulary. Eachphoneis modelled
with a 3-stateleft-to-right HMM. Further we identify the
variantsof eachstatethatareacousticallydissimilarby ask-
ing questionsaboutthe phoneticcontext in which the state
occurs. The questionsare arrangedhierarchicallyin the
form of adecisiorntree,andits leavescorrespondo thebasic
acousticunitsthatwe model. A featurevectoris extracted
every 10 ms,andwe modelthe pdf of the featurevectorfor
eachleaf of the decisiontreewith a mixture of gaussians.
The baselindfeaturevectoris the Mel cepstrumaugmented
with its 1stand 2nd temporalderivatives. We will referto
this asthe cepstrafeaturespace.Someof the systemghat
we experimentedvith splicedtogether9 framesof cepstra
(the cepstraat the currentframe; 4 framesbeforeandafter
the currentframe)andprojectingthe splicedfeaturevector



System FSP D #L #P Trg
S-VM1 133 Ceps | 39| 2313 | 134k | T-VM1
S-VM2 t708 Proj(1) | 39 | 2313 | 134k | T-VvM1
S-VM3 s Ceps | 39| 2307 | 130k | T-VM1
S-VM4 ts26 MSG | 26 | 3527 | 154k | T-VM1
S-VMB5 aa.v60 Ceps | 39| 2778 | 279k | T-VM1
S-VMBG r8aav70 Ceps | 39| 2778 | 279k | T-VM1
S-SWB1mave | Ceps | 39 | 3140 | 275k | T-SWB1
S-SWB2r0 Proj(2) | 60 | 3140 | 275k | T-SWB1
S-VMT7 tgaavso Ceps | 39 | 2778 | 279k | T-VM1 +
T-SWB2
S-VM8 saa.v26 Proj(1) | 39 | 2778 | 279k | T-VM1 +
T-SWB1

Tablel: Systemdescription

down to a lower dimension. We will refer to this feature
spaceasthe projectedfeaturespace Additionally, onesys-
tem usesmodulationfiltered spectrogram(MSG) features
[11].

We summarizethe systemsthat we worked with in Table
1. ThecolumnF'SP indicatesthetype of featurespace D
indicatesthe dimensionalityof the space# L indicatesthe
numberof leaves, # P indicatesthe numberof gaussians,
Trg indicatesthe training datathat was usedto build the
system.

4. FEATURE SPACE TRANSFORMATIONS

Lineardiscriminantanalysiq 3] is a standardechniquefor
dimensionalityreductionwith minimal loss of discrimina-
tion information. However, the LDA formulation makes
certainassumptionshatarenot alwaystrue. Chiefamong
theseis the assumptiorthat all the classeshave the same
covariancematrix.

Let {z;}1<i<n denotea sequenceof D dimensional
featurevectors,whereeachof the vectorsbelongsto a sin-
gleclassj € {1,---,J}. Let N;, u;, X; denotethesample
count,meanandcovarianceof the jt* class. The classin-
formationmaybe condensedhto two matricescalled

J
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The LDA objectve functiontriesto find a PxD projection,
0, suchthattheratio of the following determinantss maxi-
mized

_ |oBe7|
oWt

J(0) 1)

System D-VM E-VM E-SWB
dev test | eval test

S-VM1 32.26 39.61

S-VM2 30.23 35.26

S-SWB1 45.69

S-SWB2 38.8

Table2: HDA+MLLT

In [4] aHDA formulationwas presentedhat modifiedthe
LDA objective function( 1) to take into accountthe differ-
entcovariancematricesof the differentclasses
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Takingthelog of theabove objective yieldsthe HDA objec-
tive function

J
H(0) = —N;log|03;6| + Nlog |6B6”| (3)

=1

Thederivative of this objective maybederivedto be
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andquasi-Nevton methodsmaybeusedto find the optimal
solution.

Thediscriminationbetweerclasseprovidedin theHDA
featurespacerequiresthe use of full-covariancegaussian
modelsfor the classes.This is generallytoo computation-
ally expensve to be practicalin most speechrecognition
systems;consequentlythe modelsarereplacedwith gaus-
siansthat have diagonalcovariances. If the HDA feature
spaceis characterizedy dimensionsthat are highly cor
related,the modelingapproximationinherentin the diago-
nal covarianceassumptiomegatesary benefitthatthe HDA
may have. Therefore,we apply a further transformation
(MLLT) thattriesto diagonalizeéhe HDA featurespacg5].
The applicationof this transformdoesnot changethe HDA
objective function value. The final featurespacethus ob-
tainedwill be referredto asthe HDA+MLLT space. The
classeshatareusedin thecomputatioraretheleavesof the
decisiontree.

The word errorrate obtainedon the D-VM, E-VM and
E-SWBtestsetdor thecepstrahndprojectedeaturespaces
areshovnin Table 2. TheHDA+MLLT spaceis seento
provide arelativeimprovementof 10-15%overthebaseline
cepstrakpace.

J
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5. BOOSTING GAUSSIAN MIXTURES

Boostingis a techniquefor sequentiallytraining and com-
bining a collectionof classifieran suchaway thatthe later
classifiersmake up for the deficienciesof the earlierones.
Many variantsexist 7, 8] but all follow thesamebasicstrat-
egy. Thereis a sequenc®f iterationsandat eachiteration
anew classifieris trainedon a weightedsetof the training
examples. Initially, every example getsthe sameweight,
but in subsequeriterations,the weightsof hard-to-classify
examplesareincreasedelative to the easyones. The out-
putsof theclassifiersarethencombinedn suchaway asto
guaranteeertainboundson bothtraining andtestingerror
[8]. We reportresultshereusingan extensionto AdaBoost
thatwaspresentedn [6] andthatallows for large speedups
in trainingtime. The extensionwas motivatedby the scale
of the problem,wherewe have tensof millions of labeled
training pairs, thousandsf classesand and hundredsof
thousandsf gaussianthatmodelthe probabilitydensityof
theclasses.

Theinputto the AdaBoostalgorithmis a setof labeled
training pairs, (z;,y;), wherez; representshe featuresas-
sociatedwith the ith exampleandy; is its label. In our
applicationthex; areacoustideature-ectorsandthey; are
contt-dependenphonelabels.At eachiteration,t, afunc-
tion h;(z,y) is learnedthat mapsa feature/labepair into a
numberbetweer) and1. A weight, 3;, is assignedo each
classifier andthe outputof the compositeclassifieris given

by
Hiy) =Y (1og Bi) ha(z,y).

t

In ourimplementatiortheatomicclassifiersaremixturesof
gaussiansvith onemixturefor eachleaf.

In AdaBoosteachvectorz; is assignedweight, D; (i, y),
thatis relatedto the probability with which z; canbe mis-
recognizedasy. This implies that the completeclassifier
hasto be designedn onestepduring the next iterationus-
ing gradientdescentechniques.This processvas simpli-
fied by the approximationin [6], which allowed the clas-
sifier to be designedin two steps. The weights over all
classedor agivenfeaturevectorweresummedup D, (i) =
>, D:(i,y), and eachfeaturevector now was associated
with a singleweightthatis relatedto the probability of its
having beenmisclassifiedduring previous iterations. It is
now possibleto designgaussiamixturesindependentlyor
eachclassusing only the weightedexamplesof the class.
Theit* suchmixture modelsthe probability densityfunc-
tion of z for classy;, p(xz/y;), andthe classifieris now

simply definedash,(z,y) = % The merit of this
approacthis thatthe procesf clsssifierdesigncan be par
allelizedandgreatlyspeededip. For details,the readeris

referredto [6].

E-VM TestSet

System| 1stlt. | 2nd 3rd 4th 5th
S-VM1 | 39.61| 39.48| 39.15| 39.10 | 38.92
Table3: Boosting
D-VM TestSet
System | Baseline| Consensug
S-VM2 30.23 28.86
S-VM3 33.7 31.24
S-VM4 42.4 41.6
Rover 29.2 285

Table4: Consensuprocessing

The experimentalresultsobtainedby boostingthe S-
VM1 systemare summarizedn Table 3. Thetestsetis
the E-VM testset. The word error ratesindicatea small
but consistentmprovementwith increasinghumberof iter-
ations.

6. CONSENSUSHYPOTHESISPROCESSING

In all theexperimentslescribedtarlier thedecodedypoth-
esiswastakento bethe 1-besthypothesisn thesearchRe-
cently, [9] hasshavn that better performancecan be ob-
tained by consideringall the hypothesegproducedin the
searchand finding the “consensushypothesis. In short,
theword graphproducedby the standarchypothesisearch
procedureis first corvertedinto a chain-like structureby
merging different pathsin the graph. The componentf
the chainrepresenparallel sequencesf words. The cri-
terion for memging two pathsin the graphis relatedto the
time overlapbetweerthe pathsandthe phoneticsimilarity
betweertheword sequences thetwo paths.Subsequently
the mostprobablepath (or word sequence)n eachcompo-
nentof the chainis selectedandthe concatenatiorf these
pathsrepresentshe consensusiypothesis.For further de-
tails, thereadeiis referredto [9].

We evaluatedthe performanceof this techniqueon the
E-VM testsetwith the S-VM2, S-VM3 and S-VM4 sys-
tems. Subsequentlywe combinedthe consensu$iypothe-
sesof thesethreesystemausingROVER [10]. Theresults
arepresentedn Table 4. Thebaselineresultsrefersto the
1-besthypothesiof the correspondingystem

7. CROSS-DOMAIN EXPERIMENTS

In this sectionwe examinethe performanceon the Switch-
boardtest setusing acousticmodelstrainedon Voicemail



System | Training | Test
Crossdomain-Cepstrdieaturespace

E-VM | E-SWB
S-VM5 | T-VM1 39.5 62.2
S-SWB1 | T-SWB1 53.5 45.8
Crossdomain- Projectedeaturespace
S-VM6 | T-VM1 36.3 57.3
S-SWB2 | T-SWB1 46.75 | 385
JointTraining- Cepstrafeaturespace
S-VM7 | T-VM1 41.7 48.7
+ T-SWB2
JointTraining - Projectedeaturespace
S-VvM8 | T-VM1 36.6 45.6
T-SWB1

Table5: WER performancédor cross-domaircondition

andvice versa.Note, however, thatthelanguagemodeland
vocahulary wereNOT mismatchedSuperficially asVoice-
mail andSwitchboardothrepresentelephonésandlimited
corversationalspeech one would expectthe performance
on eithertestsetto be independenbf what databaset is
trainedon, but theresultsshawv thatthisis notthecase.The
differencen performancalsoappearso dependnthefea-
ture spacethatis used. We presentresultsherefor several
systems.

From Table 5, the performancedegradationfrom the
matchedcondition (shavn underlined)due to a mismatch
in the acousticmodelsrangesrom 35-36%for the cepstral
featurespacedo 29-49%for the projectedeaturespaceThe
degradationappeargo be worsefor the Switchboardtest
set. Training the acousticmodelson datafrom both do-
mainsdoesreducethe degradationto a large extent 6% for
the cepstralfeaturespace to 1% for the projectedfeature
space). The resultsshow that the individual systemsbuilt
oneithertrainingdatabasarerelatively domain-dependent,
andthat our currentmodelingtechnigquesare not asrobust
asonemight desire,andshouldbethefocusof futurealgo-
rithm development.

8. CONCLUSION

We reportthe following:

o overallreductionof 20% (relative) on Voicemaildev set

o resultson the JHU 1997 Switchboardlev testset

e useof a novel linear projection (HDA+MLLT) thatim-
proves performanceon the baselinecepstralfeaturespace
by 10-15%relative on both VoicemailandSwitchboard

o useof boostingechniquegor gaussiamixturesthatyields
3% relative improvement

¢ useof a consensusypothesisalgorithmthat providesa
3% relative improvementon both Voicemail and Switch-

board

e cross-domaimxperimentghatshow thesensitvity of sys-
tem performanceo training datae the crudeapproachof
makingthe systemmorerobustby training on the union of
all datasetsdoesseemto work
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